Normality test
> install.packages("ggpubr") > library("ggpubr") > ggdensity(df$a) > shapiro.test(df$a) Shapiro-Wilk normality test data: df$a W = 0.85717, p-value = 0.01382 > ctrl_weight = PlantGrowth$weight[PlantGrowth$group=='ctrl'] > shapiro.test(ctrl_weight) Shapiro-Wilk normality test data: ctrl_weight W = 0.95668, p-value = 0.7475
Homogeneity of Variance Test
> install.packages("lawstat")
> library(lawstat)
> levene.test(df$a, df$b)
Modified robust Brown-Forsythe Levene-type test based on the absolute deviations from the median
data: df$a
Test Statistic = 0.51658, p-value = 0.8245
> leveneTest(weight ~ group, data=PlantGrowth)
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 2 1.1192 0.3412
27
> bartlett.test(a~b, df)
homogeneity of variances
data: a by c
Bartlett's K-squared = 0.054557, df = 1, p-value = 0.8153
> bartlett.test(PlantGrowth$weight, PlantGrowth$group)
Bartlett test of homogeneity of variances
data: PlantGrowth$weight and PlantGrowth$group
Bartlett's K-squared = 2.8786, df = 2, p-value = 0.2371